C12-11.0-FCP/Blanks/Factorials/Trials Notes

FCP - Fundamental Counting Principle \square $, \ldots, \ldots$ \# Options \qquad ——, \qquad Blanks

A person has 3 shirts and 2 pairs of pants. How many different outfits can they wear?

$$
3 \times 2=6
$$

A woman has 4 pairs of shoes, 3 How many 5 digit numbers are there? dresses and 5 hats. How many different outfits can she wear?
$4 \times 3 \times 5$
$9 \times 10 \times 10 \times 10 \times 10$
90,000
A number can't start with a 0
i.e. $02345=2345$, a 4 digit number.

How many ways can you organize 3 people in a row? $3 \times 2 \times 1=3!$ Factorial

$$
\begin{aligned}
& 3!=3 \times 2 \times 1=\text { (6) } \quad \text { MATH PRB } \quad!-3!=-3 \times 2 \times 1=-6 \\
& 5!=5(4)(3)(2)(1)=120 \quad(-3)!=\text { no solution } \\
& 99!=99 \times 98 \times 97!\text { Close the factorial! } \quad(0.5)!=\text { no solution }
\end{aligned}
$$

$$
\begin{align*}
& \frac{7!}{4!}=\frac{7(6)(5)(4)(3)(2)(1)}{4(3)(2)(1)}=\frac{7(6)(5)}{1}=7(6)(5)=210 \quad \begin{array}{l}
n!=n(n-1)(n-2) \ldots(3)(2)(1) \\
n!n(n-1)!
\end{array} \\
& \frac{7!}{4!}=\frac{7 \times 6 \times 5 \times \not!!}{y!}=7 \times 6 \times 5 \tag{210}\\
& \begin{array}{l}
(n-1)! \\
(n+2)! \\
(n+2)(n+2)(n-3)! \\
(n+1)!
\end{array}
\end{align*}
$$

If you flip a coin three times what is the total number of outcomes?

A six question test has A, B, C, D, multiple-choice answers. How many answer keys are there possible?

If a family has 8 children what is the number of combinations of boys and girls?

A license plate has 3 letters followed by 3 digits.

$26 \times 26 \times 26 \times 10 \times 10 \times 10=1757600$

No Repeats
$26 \times 25 \times 24 \times 10 \times 9 \times 8=11232000$
${ }_{26} P_{3} \times{ }_{10} P_{3}=11232000$

C12-11.0-Choosing ABC nPr inCr Notes

Arranging Three of the Letters of ABC

No restrictions (repeats allowed)

27

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$B A A$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$C A B C$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$A B B$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$A C B$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$C B B$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$B C A$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$A C C$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$C A B$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$B C C$</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$C B A$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | $B A A$ |
| :--- | :--- |
| $C A B C$ | |
| $A B B$ | $A C B$ |
| $C B B$ | $B C A$ |
| $A C C$ | $C A B$ |
| $B C C$ | $C B A$ |</table-markdown></div>

Case 3: 3 different

$$
\begin{aligned}
& { }_{3} C_{1}+{ }_{3} C_{2} \times 2 \times 1 \times 1+{ }_{3} C_{2} \times 2 \times 1 \times 1+{ }_{3} C_{2} \times 2 \times 1 \times 1+{ }_{3} C_{3} \times 3! \\
& 3+3 \times 2+3 \times 2+1 \times 3! \\
& =3+6+6+6 \\
& =27 \\
&
\end{aligned}
$$

No repeats

Order matters
$A B C$ ACB BAC BCA CBA CAB (6)

Order doesn't matter
$A B C=A C B=B A C=B C A=C B A=C A B$
(1) ${ }_{3} C_{3}=\frac{3!}{3!(3-3)!}=\frac{3!}{3!\times 0!}=\frac{3!}{3!}=\frac{3 \times 2 \times 1}{3 \times 2 \times 1}$

MATH PRB inCr dst \# 1st

Arranging Two of the Letters of ABC

No restrictions (repeats allowed)

No repeats

CC

Order matters

Order doesn't matter

$$
A B=B A \quad A C=C A \quad B C=C B \quad\left(3 \quad{ }_{3} C_{2}=\frac{3!}{2!(3-2)!}=\frac{3!}{2!\times 1!}=\frac{3!}{2!}=\right.
$$

C12-11.0-Choosing Notes

5 people, how many handshakes?

$$
\begin{aligned}
{ }_{n} C_{r} & =\frac{n!}{r!(n-r)!} \\
{ }_{5} C_{2} & =\frac{5!}{2!(5-2)!} \\
{ }_{5} C_{2} & =10
\end{aligned}
$$

C12-11.0-Cases Notes

How many four digit numbers can we make from the numbers $0,1,2,3$ with no restrictions?

| $\substack{\text { Eg. }(1,2,3) \\ \text { NOT '0' }}$ |
| :---: |$\times \frac{4}{\text { Eg. }(0,1,2,3)} \times \frac{4}{\text { Eg. }(0,1,2,3)} \times \frac{4}{\text { Eg. }(0,1,2,3)}=3 \times 4^{3}=192$

How many 4 digit numbers can we make from the numbers $0,1,2,3$ without repeating numbers?

$$
{ }_{3} P_{1} \times{ }_{3} P_{3}=18
$$

How many 4 digit EVEN numbers can we make from the numbers $0,1,2,3$ with no repeats?

1230

An even number must have a 0 or 2 last. If the 0 is last, we can use the 2 first. Case \#1.
But, if we use the 2 last, the 0 cannot come first. Case \#2.
Therefore, 2 cases.
3210
Case 1: $\frac{3}{\text { Eg. }(1,2,3)} \times \frac{2}{\text { Eg. }(2,3)} \times \frac{1}{\text { Eg. }(3)} \times \frac{1}{\text { Eg. }(0 \text { or } 2 X)}=6$

Case 2:
Case 2:

$$
\overline{\text { Eg. }(1,3)} \text { Eg. }(0,3)
$$

$\times 1 \times 1=4$
Eg. (0)

If the last number* affects the first numbers you can choose from: multiple cases.

C12-11.0-President/Committee Notes

A president, secretary and treasurer are chosen from 10 people. How many different choices are there?

A committee of 3 people is chosen from 10 people. How many different choices are there?

${ }_{10} C_{3}=\frac{10!}{3!(10-3)!}$	$\frac{10 \times 9 \times 8}{3!}=\frac{720}{6}={ }^{120}$	The number of ways you can choose a committee is :		
The number of ways				
${ }_{10} C_{3}=\frac{10!}{3!(7)!}$				
${ }_{10} C_{3}=\frac{10 \times 9 \times 8 \times 7!}{3 \times 2 \times 1!7!}$	${ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}$	${ }_{n} P_{r}={ }_{n} C_{r} \times r!$ you can choose Pres, Vice, and Sec, divided by the number of ways you can organize 3 people.		
${ }_{10} C_{3}=\frac{720}{6}$	${ }_{10} C_{3}=\frac{10}{3!} P_{3}$	${ }_{10} P_{3}={ }_{10} C_{3} \times 3!$ ${ }_{10} P_{3}=120 \times 6$		
	${ }_{10} C_{3}=120$	${ }_{10} C_{3}=\frac{720}{6}$		${ }_{10} P_{3}=720$
:---				

C12-11.0-All Minus None/Not Notes

We have three boys and four girls. 3 b's 4 g's
How many different ways can we make a group of three, with no restrictions?

$$
{ }_{7} C_{3}=35 \quad \text { OR } \quad \frac{(3+4)!}{3!4!}=35
$$

How many different ways can we make a group of three, with exactly two boys and one girl?

$$
\begin{array}{r}
{ }_{3} C_{2} \times{ }_{4} C_{1}=3 \times 4=12 \\
p(2 b, 1 g)=\frac{12}{35}
\end{array}
$$

Choose 2 boys from 3 boys, and 1 girl from 4 girls.

How many different ways can we make a group of three, with at least one boy?
Three cases: Case 1: $1 \mathrm{~b}, 2 \mathrm{~g} \quad$ Case 2: $2 \mathrm{~b}, 1 \mathrm{~g} \quad$ Case 3: $3 \mathrm{~b}, 0 \mathrm{~g}$

We have 10 boys and 11 girls. How many different ways can we make a group of 10 with at least one boy?

$$
\begin{array}{ll}
\text { All - None } & \text { We did this instead of adding the cases } 1 \text { boys, } 2 \text { boys, } 3 \text { boys, } \\
{ }_{21} C_{10}-\left({ }_{10} C_{0} \times{ }_{11} C_{10}\right)=352705 & 4 \text { boys, } 5 \text { boys, } 6 \text { boys, } 7 \text { boys, } 8 \text { boys, } 9 \text { boys, and } 10 \text { boys. }
\end{array}
$$

A lot of the time it is easier to figure out the number of ways something can't be done, rather than be done, and then subtract this from the total number of possible outcomes.

We have 10 boys and 11 girls. How many different ways can we make a group of 10 with at least two boy?

$$
\begin{aligned}
& \text { All - } 1 \text { boy - } 0 \text { boy } \\
& { }_{21} C_{10}-\left({ }_{10} C_{1} \times{ }_{11} C_{9}\right)-\left({ }_{10} C_{0} \times{ }_{11} C_{10}\right)=352155
\end{aligned}
$$

A family of 5 takes a family photo. How many ways can the parents not sit together? Answer. The total number of ways the family can sit with no restrictions, Minus the number of ways the parents can sit Together. Think about it! Very Useful!

A-Parent

$$
\begin{aligned}
& \begin{array}{l}
\text { B-Parent } \\
\text { C-Child } \\
\text { D-Child } \\
\text { E-Child }
\end{array} \\
& { }_{5} P_{5}=5!=120
\end{aligned} \begin{array}{cc}
\text { CDE }^{*} & { }_{3} P_{3}=3!=6
\end{array}{ }_{2} P_{2}=2!=2 \quad \text { (AB)CDE }
$$

_, _-._ _-
4 Locations
$C(A B) D E \quad C D(A B) E \quad C D E(A B)$

OR $\quad 4!2!=48$
Treat parents like
one thing.

C12-1.0-Identical Objects/Pathways Notes

How many different words can we make from the letters POLE?

$4 \times 3 \times 2 \times 1=4!=24$			
POLE	24		
PLEP	EPOL	LOPE	
PELO	OLPE	EPLO	LEPO
PLEO	OPLE	ELPO	LPOE
PLOE	OPEL	ELOP	LPEO
POEL	OELP	EOPL	LPEO
PEOL	OEPL	EOLP	LOEP

A ten question multiple choice exam

How many different words can we make from the letter POLO?

How many different words can we make from the letters PEEP?
 has solutions as follows: 5 A's, 3 B's, 1 C, 1 D. In how many different ways could these answers be ordered?

$$
\frac{10!}{5!3!}=\frac{10 \times 9 \times 8 \times 7 \times 5!}{5!(3 \times 2 \times 1)}=\frac{10 \times 9 \times 8 \times 7}{6}=840
$$

Paths in squares formula:

You want to ask yourself, how many lines are coming towards that point from the direction they can come and add the numbers.

How many different paths can you follow from A to B if you only move down or to the right?

A

We can only use these formulas if they are perfect rectangles or squares or cubes. No Gaps

C12-11.0-nPr nCr Algebra Notes

Solve for the missing variable

$$
\begin{aligned}
& { }_{n} C_{2}=10 \\
& { }_{n} P_{2}=42 \\
& { }_{n} C_{r}=\frac{n!}{r!(n-r)!} \\
& { }_{n} C_{2}=\frac{n!}{2!(n-2)!}=10 \\
& \frac{n!}{2(n-2)!}=10 \\
& \frac{n!}{(n-2)!}=20 \\
& \begin{aligned}
\frac{n(n-1)(n-2)!}{(n / 2)!} & =20 \\
n^{2}-n & =20
\end{aligned} \\
& n^{2}-n-20=0 \\
& (n-5)(n+4)=20 \\
& n=5 n=-4 \\
& { }_{5} C_{2}=10 \text { Check } \\
& { }_{n} P_{r}=\frac{n!}{(n-r)!} \\
& { }_{n} P_{2}=\frac{n!}{(n-2)!}=42 \\
& \frac{n!}{(n-2)!}=42 \\
& \frac{n(n-1)(n-2)!}{(n-2)!}=42 \\
& n^{2}-n=42 \\
& n^{2}-n-42=0 \\
& (n-7)(n+6)=20 \\
& { }_{7} P_{2}=42 \text { Check }
\end{aligned}
$$

$$
\begin{array}{|l|}
{ }_{n} C_{3}=4 \\
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!} \\
{ }_{n} C_{3}=\frac{n!}{3!(n-3)!} \\
4=\frac{n!}{6(n-3)!} \\
24=\frac{n!}{(n-3)!} \\
24=\frac{n(n-1)(n-2)(n-3)!}{(n-3)!} \\
n(n-1)(n-2)=24 \\
n\left(n^{2}-3 n+2\right)=24 \\
n^{3}-3 n^{2}+2 n-24=0 \\
\hline
\end{array}
$$

Cubic factoring/guess and check

$$
\begin{array}{ccrc}
t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k} & (a+b)^{n} & t_{k+1}=t_{5} & \text { Check } \\
t_{5}={ }_{6} C_{4} a^{6-4} b^{4} & n=6 & k+1=5 & 1 a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+1 b^{6} \\
t_{5}=15 a^{2} b^{4} & n=4 & \\
& a=a & k=4 & \\
& b=b & &
\end{array}
$$

$$
\begin{aligned}
{ }_{3} C_{r} & =3 \\
{ }_{n} C_{r} & =\frac{n!}{r!(n-r)!} \\
{ }_{3} C_{r} & =\frac{3!}{r!(3-r)!}=3 \\
3 & =\frac{6}{r!(3-r)!} \\
\frac{6}{3} & =r!(3-r)! \\
2 & =r!(3-r)! \\
{ }_{3} C_{3} & =1 \\
{ }_{3} C_{2} & =3 \quad r=2 \\
{ }_{3} C_{1} & =3 \quad r=1
\end{aligned}
$$

Nope! Guess
and check.
${ }_{4} C_{3}=4$

Be careful, may
, walues!

Which term in the binomial expansion $\left(x^{2}+2\right)^{3}$ has x^{4} ? Find the term.

$$
\begin{aligned}
& t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k} \\
& t_{k+1}={ }_{3} C_{k}\left(x^{2}\right)^{3-k}(2)^{k} \\
& \left(x^{2}\right)^{3-k}=x^{4} \\
& x^{6-2 k}=x^{4} \\
& t_{2}={ }_{3} C_{1}\left(x^{2}\right)^{3-1}(2)^{1} \\
& 6-2 k=4 \\
& \begin{array}{l}
t_{2}=3\left(x^{2}\right)^{2} \times 2 \\
t_{2}=6 x^{4}
\end{array} \begin{array}{l}
\text { the second } \\
\text { term, } t_{2}=6 x^{4}
\end{array} \begin{array}{l}
2=2 k \\
k=1
\end{array} \begin{array}{l}
t_{k+1}= \\
t_{1+1}=t_{2}
\end{array} \\
& \left(x^{2}+2\right)^{3}=\left(x^{2}+2\right)\left(x^{2}+2\right)\left(x^{2}+2\right)=\left(x^{4}+4 x^{2}+4\right)\left(x^{2}+2\right)=x^{6}+6 x^{4}+12 x^{2}+8
\end{aligned}
$$

Which term in the binomial expansion $\left(x^{2}+2\right)^{3}$ is a constant? $\left(\mathrm{eg} 5=.5 x^{0}\right)$ Find the term.
$t_{k+1}={ }_{n} C_{k} a^{n-k} b^{k}$

Which term in the binomial expansion
$\left(x^{2}-\frac{1}{x}\right)^{10}=\left(x^{2}-x^{-1}\right)^{10}$ has x^{11} ? Find the term.

C12-11.0 - Table of Cards

	Hearts	Diamonds	Spades 4	Clubs ${ }^{4}$	Ace is both high and low*
	Ace ${ }^{\bullet}$	Ace	Ace 9	Ace $\$$	
	2	2	29	24	
S	30	3	3 ¢	34	
A	$4 \bullet$	4	49	44	
M P	5	5	5 ¢	54	
L	6	6	6 9	64	52 card deck
E	7	7	7 ¢	74	4 suits
S	8	8	8 ¢	84	4 of each rank
P	$9{ }^{\circ}$	9	9	94	
C	10	10	$10 ¢$	10 \$	
E	Jack ${ }^{\text {P }}$	Jack	Jack Φ	Jack $\$$	
	Queen *	Queen ${ }^{\text {d }}$	Queen 9	Queen ${ }^{\text {P }}$	
	King ${ }^{*}$	King ${ }^{\text {b }}$	King $¢$	King 4	

5 card poker hands $\quad{ }_{52} C_{5}=2598960$ Hands $\quad P($ hand $)=\frac{\# \text { of }}{{ }_{52} C_{5}}$

Hand							${ }_{n} C_{r}$	\# of
Royal Flush	Ace ${ }^{\bullet}$	King ${ }^{\bullet}$	Queen ${ }^{\text {® }}$	Jack	10	10-Ace same suit	${ }_{4} C_{1} \times 1=4$	4
Straight Flush	5 ¢	69	7 ¢	8	10 ¢	5 card run same suit	${ }_{4} C_{1} \times 10-4=36$	36
4 of a Kind	7	7	7 ¢	74	3	4 same rank, 1 other	${ }_{13} C_{1}{ }_{4} C_{4}{ }_{48} C_{1}$	624
Full House	2	2	29	4	44	3 same rank, 1 pair	${ }_{13} C_{1}{ }_{4} C_{3}{ }_{12} C_{1}{ }_{4} C_{2}$	3744
Flush	4 ¢	8	Jack 9	29	69	All same suit, no straight	${ }_{4} C_{1} \times{ }_{13} C_{5}-40$	5108
Straight	3	44	5	6 ¢	74	5 card run, not all same suit	$\left({ }_{4} C_{1}\right)^{5} \times 10-40$	10200
3 of a kind	9	9	9 ¢	2	54	3 kind, 2 others not a pair	${ }_{13} C_{1}{ }_{4} C_{3}{ }_{12} C_{2}\left({ }_{4} C_{1}\right)^{2}$	54912
2 pair	4	4 ¢	5	5 ¢	Queen ${ }^{\text {¢ }}$	2 different pairs, 1 other	${ }_{13} C_{2}\left({ }_{4} C_{2}\right)^{2}{ }_{44} C_{1}$	123552
Pair	King	King 9	6	94	2	1 pair 3 others	${ }_{13} C_{1}{ }_{4} C_{2}{ }_{12} C_{3}\left({ }_{4} C_{1}\right)^{3}$	1098240
High Card	Jack 9	8	4 ¢	2	7 ¢	None of the above	${ }_{52} C_{5}$ - above sum	1302540

$$
\begin{array}{cc}
3 \text { Kind } \neq & \text { Pair } \neq \\
{ }_{13} C_{1}{ }_{4} C_{3}{ }_{12} C_{1}{ }_{4} C_{1}{ }_{11} C_{1}{ }_{4} C_{1} & \\
& \\
2 \text { Pair } \neq & \\
{ }_{13} C_{1}{ }_{4} C_{2}{ }_{12} C_{1}{ }_{4} C_{1}{ }_{11} C_{1}{ }_{4} C_{1}{ }_{10} C_{1}{ }_{4} C_{1} & \text { Note: } \\
{ }_{12} C_{14} C_{2}{ }_{11} C_{1}{ }_{4} C_{1} & { }_{48} C_{1}={ }_{12} C_{1}{ }_{4} C_{1} \\
{ }_{44} C_{1}={ }_{11} C_{1}{ }_{4} C_{1}
\end{array}
$$

