## S12-0.0-Definitions

Population - (Parameters) The complete collection of all individuals. (Data) Sample - (Statistic) A subcollection of members selected from a population. (Data)

## Data Types

Quantitative - Measurable (Height/Weight)
Categorical - Not measurable (Colour)
Discrete (Penny Weight)
Continuous (Human Weight)
Nominal - Names, Labels, Categories. ie. Yes/No
Ordinal - Can be arranged in order. ie. Grades $A, B, C, D$
Interval - Like Ordinal but difference has meaning. ie. Temp
Ratio - Interval with zero as starting point. ie. Distance

## Samples (Voluntary Response?)

Each member of Population :

- Random - is as likely (Simple : Sample)
- Probability - is known (not the same*)

Systematic - Select on every 50th* person
Convenience - Results that are easy to get
Stratified - At least two subgroups. ie. Male/Female
Cluster - Divide into sections

Correlation (Outcomes related) vs Causation (One Causes other)

Experimental - Altered
Observational - Unaltered

Data Characteristics<br>Centre - Average<br>Variation - Measure of vary<br>Distribution - Shape of spread<br>Outliers - Lie far from<br>Time - Changing over time<br>Biases (Source/Context)<br>-Selection (Non-representative sample)<br>-Response (Non-response)<br>-Voluntary<br>-Leading Question<br>-Loss Aversion<br>-Framing Bias<br>-Anchoring Bias

Statistical/Practical
Significance/Conclusion


## S12-0.0-Definitions

Number of Trials : Number of times experiment is repeated.
Outcomes: Different possible results.

5\% Rule*
$\mathrm{p}(x) \leq 0.05$ is Rare .

Event : A set of outcomes ie. Coin Toss
Sample Space " $S$ ": The set of all possible outcomes in an event. ie. Heads/Tails $\{\mathrm{H}, \mathrm{T}\}$
$P(E)$ : Probability of event "E"
Frequency: Number of times a particular outcome observed.
Relative Frequency : Frequency divided by number of trials = Experimental Probability
Dependent : Dependent on previous Event.
Independent : Independent on previous Event.
Mutually Exclusive : Can't happen at the same time (aka Disjointed).
Compliment : Events Not in "A". $P(\bar{E})=1-P(E) \quad \bar{E}:$ Not $E$
Compound Event : Two or more simple events.

Point Estimate : a single value used to approximate population parameter.
Confidence interval : a range, or interval, of values used to estimate a true value of a population parameter.
Confidence Level : The probability $(1-\alpha)$ that the confidence interval actually contains the population parameter.
Critical Value : the number on the borderline separating sample statistics that are likely to occur from those that are unlikely to occur.
Degrees of Freedom : For a collection of sample data, is the number of sample values that can vary after certain restrictions have been imposed on all values.

Random Variable : a variable that has a single numerical value.
Probability Distribution : a description that gives the probability for each value of the random variable. (Graph/Table/Formula) $\sum=1.0$
Discrete random variable : has either a finite number of values or a countable number of values. (ie. \# of Books) Continuous random variable: has infinite many values, and those values can be associated with measurements on a continuous scale without gaps or interruptions. (ie. Distance)
Binomial Probability Distribution: results from a procedure that has a fixed number of independent trials of success or failure at a constant probability.

$$
\begin{array}{lll}
\text { Percentiles of } x=\frac{\text { number of values less than } x}{\text { total number of values }} & L=\frac{k}{100} n & \begin{array}{l}
\text { Frequency } \\
\text { Distribution }
\end{array} \\
\text { Interquartile Range }(\mathrm{IQR})=Q_{3}-Q_{1} & \text { LWhole; } \frac{x_{L}+x_{L+1}}{2} & \text { If } x \text { is a range } \\
\text { Semi-interquartile Range }(\mathrm{IQR})=\frac{Q_{3}-Q_{1}}{2} & \text { Or Round up } & \text { use midpoint } \\
\text { Midquartile }=\frac{Q_{3}+Q_{1}}{2} & &
\end{array}
$$

