

Alternative is the Claim. Null: Nothing Changed. Fail/Reject is about H_0

S12 - 3.6 - Hyp Testing Notes

Claim: Average male height is NOT 160 cm? Gov' says $\mu = 160$. 100 males $\overline{x} = 162 cm$. s = 8 cm. 95% CL. Null Hypothesis H_0 : Average male height is 160 cm H_{0} : $\mu = 160 \ cm$ Alternate Hypothesis H_a : Average male height > or < 160 cm $H_a: \mu \neq 160$ 95% Confidence Level n = 100 males Significance Level $\mu = 162 cm$ $\frac{\overline{\sqrt{n}}}{162 - 160}$ $\alpha = 0.05$ Two Tail Test $\sigma = 8cm$ $z\alpha = \pm 1.96$ 8 95% 2.5%*n* > 30 2.5% $\sqrt{100}$ *<u>Reject Ho</u>*: There is sufficient evidence $z_c = 2.5$ -1.96 $z_{\frac{\alpha}{2}} = 1.96$ $Z_{\frac{\alpha}{2}} =$ average male height is NOT 160cm at a **Critical Values** $z_{c} = +2.5$ 95% confidence level. In a random sample 200 out of 1000 failed to finish university in under 4 years. (Finished in over 4 years/or did not finish*) Claim: Less than 25% finish in university under 4 years. 99% CL. Null Hypothesis $H_0: p = 0.25$ or $H_0: p \ge 0.25$ $z_c = \frac{\ddot{p} - \mu}{\left|\frac{pq}{p}\right|}$ Alternative Hypothesis $H_A: p < 0.25$ One Tail Test 200 q = 1 - p99% CL 1000 q = 1 - 0.299% $SL\alpha = 0.01$ 0.2 - 0.251% a = 0.80.2(0.8) Fail to *Reject* H_{Ω} : There is NOT sufficient evidence $z_{\alpha} = -2.33$ $z_c = -1.25$ 1000 support the claim that 25% (Or More) of students **Critical Value** -1.25fail to finish university in under 4 years at a 99% confidence level. Claim: Average male height is more than 160 cm? Gov' says $\mu = 160.25$ males $\bar{x} = 162 cm.s = 8 cm.90\%$ CL.

